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The possibilities of artificial intelligence 
(AI), and more specifically, machine 
learning (ML), are being researched 
across almost all domains of medicine, 
and the field of intensive care medicine 
is certainly no exception. Several factors 
contribute to the intensive care unit (ICU) 

being one of the focal points of AI/ML 
research. Intensive care was one of the 
earliest adaptors of the electronic health 
record (EHR) (Varun and Marik 2002), 
making data readily available. A vast 
amount of diverse data is generated for 
an individual patient during clinical care, 
resulting in 6.000–30.000 routinely collected 
healthcare data points per ICU patient per 
day. As this data is mostly structured and 
annotated, it is very suitable for training 
ML models. Although these datasets still 
need to be unbolted to be usable for (big) 
data research in many cases, several ready-
to-use publicly available datasets extracted 
from information in the EHR already exist 
to date (Sauer et al. 2022; Jin et al. 2023; 
Rodemund et al. 2023). At the same time, 
large nationwide data-sharing initiatives are 
being set up to unlock even more routinely 
collected healthcare data for clinicians, 
researchers and data scientists alike. As 
such, the data-rich ICU environment 
has and is developing the prerequisites 
to further enable (big) data research. 
The expectations for the clinical impact 
of AI have risen alongside the number of 
published studies. It is generally expected 
that AI will harbour benefits for patients 
as well as clinicians and the whole of 
society (Topol 2019). This is reflected in 
the variety of study aims for which AI has 
been investigated in published studies so 
far (van de Sande et al. 2021). 

From a societal, patient, and research 
perspective, antimicrobial resistance (AMR) 
is an interesting research area for AI/ML, 
as it remains one of the biggest threats to 

global healthcare. According to the O'Neill 
report, it is estimated that by 2050, the 
death toll due to AMR could rise to 10 
million lives a year worldwide (O'Neill 
2023). AMR is particularly relevant for 
the ICU patient, as several AMR drivers 
(e.g., high selective pressure due to frequent 
antimicrobial use) are present in the ICU, 
and AMR infections can heavily impact a 
patient's ICU morbidity and mortality. One 
way of tackling the increase of AMR is by 
antimicrobial stewardship, which aims to 
combat antibiotic resistance by improving 
antimicrobial prescribing and use (CDC 
2022). Antimicrobial stewardship comprises 
several interventions that can be performed 
during every step of antimicrobial therapy, 
and several use cases have been researched 
to explore how software and/or AI might aid 
in 'the rights' of antimicrobial prescription: 
the right drug at the right time and the right 
dose for the right patient (Grissinger 2010).

Identifying the right ICU patient means 
identifying the ICU patient that has a 
higher probability of infection than for 
inflammation. At present, clinicians use 
a combination of clinical gestalt and 
clinical decision rules when making this 
discrimination by incorporating information 
from the medical history, clinical 
examination, technical investigations, 
and laboratory and microbiological 
information. Research has shown that 
differentiating infection from inflammation 
poses a challenge for ICU physicians, 
especially when the infection is defined 
by consensus criteria, for instance, in the 
case of sepsis or ventilated-associated 

Ongoing research and challenges regarding the use of Artificial Intelligence and 
Machine Learning to leverage data and identify complex interactions to address 
antimicrobial resistance in the ICU. 
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pneumonia (Lopansri et al. 2019; Stevens 
et al. 2014). Parallel to the continuous 
search for the perfect discriminator of 
infection and inflammation, researchers 
have also turned to AI/ML to see if routinely 
collected healthcare data can be leveraged, 
with some interesting results. For example, 

models have been developed that try to 
discriminate bacterial from non-bacterial 
sepsis in children using eight routinely 
available parameters, which outperform 
currently available biomarkers (Lamping 
et al. 2018). Another study developed ML 
models to aid in the diagnosis of bacterial 

infection in COVID-19 patients, which are 
currently being tested in clinical practice 
(Rawson et al. 2021). 

Once the right patient is identified, 
prescribing the correct antimicrobial entails 
assessing the possible causative pathogens 
and their potential resistance profile. While 

Table 1. Challenges for the development of AI/ML prediction models for AMR

Challenge Key contributors Proposed mitigation strategy

Sampling bias • An insufficient amount of the pathogen might be sampled and cultured to test for 
resistance, leading to unrepresentative datasets.

• Prospectively constructed datasets using 
uniform sampling approaches.

Colonisation versus
infection

• A cultured organism, especially from a non-sterile culture site, can be either a 
coloniser or a true pathogen.

• Prospectively constructed dataset with 
clinical annotation.

Heterogeneity and 
temporality of 

resistance mechanisms

• Resistance can be classified as natural resistance (either intrinsic or induced) or 
acquired resistance. 

• Resistance can be permanent or temporary. 
• Cross-resistance and collateral sensitivity can occur.

• Incorporation of domain knowledge 
in model development to overcome 
the limitation of data-driven methods 
regarding infrequently encountered 
mechanisms.

Ground truth

• Epidemiological cut-off values to classify resistance differ according to the issuing 
institution and are subject to change. 

• The two currently most frequently used methods to determine resistance (disk 
diffusion and broth microdilution) have a certain margin of error, with the possibility 
of false positive or false negative classification of an organism.

• Standardisation of susceptibility 
definitions.

• Innovative technology to optimise 
pathogen susceptibility testing.

Informative sampling 
in routinely collected 

healthcare data

• The collection of certain types of information is dependent on a patient's past 
and current characteristics, administered treatments and changes in health state. 
Information is, therefore, not collected randomly or at fixed time points.

• Prospectively constructed datasets using 
uniform sampling approaches.

Incomplete datasets

• Several relevant data points from within the ICU (e.g., linkage of health care providers 
to patients to enable detection of AMR transmission via health care providers) or 
from outside the ICU (e.g., results from cultures taken in the community) are often 
not available in current datasets. 

• Measures taken against or during outbreaks of AMR are often not available in a 
machine-readable format in the EHR.

• Prospectively constructed digital 
datasets incorporating all relevant 
information.

• Linkage with information from outside 
the hospital patient data management 
system.

Ecology 
differences

Differences in local microbiological ecology and outbreaks of AMR can lead to:
• Data imbalance during model development.
• Dataset shift during model implementation.

• Attention to data imbalance during 
model development.

• Prospective evaluation of models.
• Monitoring of dataset shift after 

deployment.

routine colonisation cultures in the absence 
of infection are performed in many patients 
during their ICU stay and are often used 
when prescribing antimicrobials, the value 
of these cultures to guide antimicrobial 
therapy during a subsequent infection 
is subject of debate (Bredin et al. 2022; 
Barbier et al. 2016). Over the years, several 
risk factors have been identified that are 
linked to antimicrobial resistance (De 
Waele et al. 2018). Based on these risk 

factors, clinical risk scores to predict the 
presence of AMR are being developed and 
tested but have not yet achieved widespread 
implementation (Burillo et al. 2019; Boyd 
et al. 2020). For this field as well, AI and 
routinely collected healthcare data are 
combined to fill a clinical need (Martínez-
Agüero et al. 2019; Pascual-Sánchez et al. 
2020). Although promising, the results 
of these developed models have not yet 
been tested in clinical practice. Besides 

predicting infections with AMR organisms, 
expediting the identification of AMR 
organisms after obtaining a microbiological 
sample is another strategy to optimise 
antimicrobial prescribing. To this end, 
a variety of ML models combined with 
various phenotypic and genotypic resistance 
identification techniques for a range of 
sample types and organisms are being 
researched. Some models try to predict 
resistance based solely on a combination 
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of limited microbiological (e.g., type of 
sample and gram stain) and demographic 
data (e.g., age and gender), while others 
are directly incorporated into the sample 
analysis flow of certain techniques such 
as liquid chromatography with tandem 
mass spectrometry or Raman spectroscopy 
(Feretzakis et al. 2020; Roux-Dalvai et al. 
2019; Ho et al. 2019). 

As demonstrated by these examples, it 
is clear that the interest in applying AI/
ML to the AMR domain is slowly growing. 
A recent review by Farhat et al. (2016) 
identified 676 AMR and AI/ML-specific 
publications, the majority (78.7%) being 
empirical papers and most of them being 
published after 2018, which is indicative 
of the juvenility of this nascent research 
domain. Despite the recency of this field, 
some research, such as incorporating AI/ML 
methods to augment and expedite current 
AMR diagnostic techniques, is envisioned 
to swiftly find its way into clinical practice 
once it has been thoroughly tested. Other 
research, such as predicting AMR from 
routinely collected healthcare data, might 
prove to be a bigger challenge to develop 
and implement. 

We identified seven main challenges for 
predicting AMR using AI/ML and routinely 

collected healthcare data. All seven are 
summarised in Table 1. For development, 
a first challenge is the potential sampling 
bias in routinely collected healthcare data. 
During clinical care, information is often 
not recorded on fixed time points nor 
randomly but only informatively, i.e., the 
collection of certain types of information is 
dependent on a patient’s past and current 
characteristics, administered treatments 
and changes in health state (Goldstein et 
al. 2016). In the case of AMR, for example, 
blood cultures will not routinely be drawn 
but only when there is a reason to do so. 
This might hinder the development of AMR 
prediction models using routinely collected 
healthcare data as they might not provide a 
proper AMR baseline status and warrants 
the development of prospectively designed 
use case-specific databases to avoid biases. 
Additionally, antimicrobial resistance is 
characterised by both intrinsic resistance 
(i.e., resistance that is universally expressed 
by a species to a certain antimicrobial, 
independent of previous antibiotic 
exposure, and not related to horizontal 
gene transfer) and induced resistance (i.e., 
resistance induced by antibiotic exposure 
or horizontal gene transfer) (Reygaert 
2018). To complicate things even further, 

varying degrees of cross-resistance (when 
a single molecular mechanism induces 
resistance to multiple antimicrobial agents) 
or collateral sensitivity (when a single 
molecular mechanism induces susceptibility 
to multiple antimicrobial agents) can occur 
(Colclough et al. 2019). Adding to this 
complexity is the fact that AMR pathogens 
can spread across and within wards due 
to horizontal transmission, often with 
the caregivers as an intermediate. Purely 
data-driven ML models might not be 
able to identify these specific instances, 
as these do not occur frequently, and 
therefore, the necessary data to identify 
these relationships are often not present 
in routinely collected healthcare datasets. 
Alternative methods, such as hybrid AI or 
incorporating domain knowledge into ML, 
will have to be researched to incorporate 
these vital pieces of information into model 
development. 

Considering the implementation of 
prediction models, antimicrobial resistance 
ecology might prove to be another challenge. 
As patient populations and patterns of 
antimicrobial resistance tend to vary 
between hospitals and between wards in 
the same hospital, the external validity 
of developed ML models will have to be 

Figure 1. One Health perspective on AMR from an ICU point. Data from (a) the hospital environment (e.g., waste management, outbreak of 
AMR pathogens and antimicrobial prescriptions) contributes to (b) the human health perspective of the One Health framework, where this 
information is supplemented with, e.g., antimicrobial prescription patterns in the community and outpatient culture results. Combined with 
information on animal health (e.g., antimicrobial usage and AMR patterns) and environmental health (e.g., wastewater analysis and impact 
analysis of healthcare and agriculture on the environment), developed AI/ML models provide integrative support to ICU physicians to combat 
AMR (c).
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carefully evaluated. But even when a model 
is used in the same ward as where it was 
developed, validity of the predictions should 
be carefully monitored, as outbreaks or 
horizontal transmission can quickly induce 
a change in local ecology, which in turn 
can lead to bias and thus malfunctioning of 
the prediction model due to a discrepancy 
between the population the model is 
used on and the population the model 
was developed on (Finlayson et al. 2021). 

Finally, to be able to fully leverage AI/ML 
in the AMR domain, information will have 
to be included from outside the boundaries 
of the ICU. Antimicrobial treatments that 
were given by general practitioners and 
culture results from outside the hospital are 
just two examples of relevant information 
that can contribute to AMR research. 
Additionally, as several non-medical 

factors influence the occurrence of 
AMR, occupational and environmental 
information from other sources might 
also prove to be useful. Integrating all 
these different information sources will 
require data from these sources to be 
findable, accessible, interoperable and 
reusable (FAIR), as well as a more holistic 
approach to AMR from clinicians and 
researchers. Only then will we truly be 
able to approach antimicrobial resistance 
from a One Health perspective (Figure 1). 

In summary, the possibility of AI and 
ML to leverage vast amount of data to 
identify complex interactions shows 
promise to address AMR in the ICU 
and support antimicrobial stewardship. 
Possible applications include discriminating 
inflammation from infection, optimising 
antimicrobial use, including empirical 

choices and dose selection, and predicting 
AMR pathogen involvement in acute 
infections. However, developing and 
implementing AMR prediction models 
in the ICU using a data-driven approach 
with routinely collected healthcare data 
poses several challenges due to, inter 
alia, informative data sampling and the 
intricacies of antimicrobial resistance. 
Other strategies, such as the development 
of goal-specific datasets and the inclusion of 
domain knowledge in model development, 
will need to be explored to overcome these 
issues. Ultimately, to enable a comprehensive 
AI-based approach to AMR from a "One 
Health" perspective, integration of diverse 
data sources beyond the ICU will be crucial. 
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