First developed in aviation, CRM education facilitates prevention of accidents in medicine. Beyond the improvement of technical skills, the simulation can provide to learners the capacity to work with other team members, to pay attention to the work environment and to manage physiological or psychological constraints in critical situations.
Activity in intensive care and emergency medicine
Intensive
care and emergency medicine are high risk departments where critical decisions
and procedures are performed by multidisciplinary teams on vulnerable patients.
Patients in the intensive care unit frequently suffer from multiple organ
dysfunction that requires invasive support and multiple intravenous medications
with rapid response rates required. Errors in such frail patients have a major
impact on morbidity and mortality with an estimated 100,000 deaths each year in
the U.S. due to medical errors (Kohn et al. 2000). Emergency and intensive care
units teams have irregular working patterns, with long working hours and night
shifts at irregular intervals. They are therefore frequently exposed to stress
and fatigue. The skills required to deliver quality of care can be
differentiated into technical and non-technical skills (NTS), both playing a
crucial role in patient safety (Flin et al. 2008).
You might also like: Implementation challenges of crew resource management
CRM education
CRM
(Crew Resource Management1)
training was first used by civil aviation after many deadly accidents in the
1970s (e.g. Tenerife airport disaster that killed 583 people). Lauber (1984)
defines CRM as “using all the available resources (information, equipment and
other people), to achieve safe and efficient flight operation”. The main
objective of CRM is to reduce accidents derived from human errors. To explain
the increase of accidents in the aviation industry, we can enumerate the
introduction of technology in the human activity (e.g. augmentation of
complexity; Hollnagel 1991), and also the impact of human collaboration (e.g.
communication between the exterior and interior of the cockpit or within the
crew). In the literature, two concepts were identified to illustrate the human
skills during their activities, namely technical skills (also named hard
skills) and non-technical skills (also named soft skills). For Flin and
colleagues (2003), the concept of non-technical skills includes cognitive skills
(cooperation, leadership and managerial skills) and social skills (situation
awareness and decision making), as being a complement of workers’ technical
skills. In medicine, medical errors are the third leading cause of death in the
U.S. (Makary and Daniel 2016). The notion of error is quite complex (Reason
1990; Amalberti 2013), but we can consider that it contributes to accidents.
For St Pierre, Hofinger and Buerschaper (2008), critical situations provoke
errors, which can even lead to accidents. Flin and colleagues (2003) created a
taxonomy, named NOTECHS (NOn-TECHnical Skills) to evaluate the good and bad
practices of NTS in aviation. This work has been translated to surgery to
design an evaluation scale of NTS in the teamwork operating theatre (Sevdalis
et al. 2008). Many methods emerge from the medical domain to evaluate NTS in
different specialities like anaesthesia (Fletcher et al. 2003). The objective
of these methods is to evaluate the capacity of practitioners: (1) to work with
the other membership or colleagues (e.g. communication or leadership), (2) to
pay attention to the work environment (e.g. situation awareness) and (3) to
manage physiological or psychological constraints (e.g. stress or fatigue). In
their book Safety at the sharp end, Flin, O’Connor and Crichton (2008)
formulated NTS into seven skills: situation awareness, decision making,
communication, teamwork, leadership, managing stress and coping with fatigue.
For them, NTS represent cognitive, social and personal resources skills that
complement technical skills and contribute to safe and efficient task
performance. Indeed, the deficiency of technical knowledge is not enough to
explain the occurrence of accidents. For example, the analysis of the case of
Elaine Bromiley (Reid and Bromiley 2012) revealed a deficit in situation
awareness and some wrong communication between the membership of the medical
team, which led to bad decisions and the death of the patient. At the beginning
of the 1990s, the crew resource management of aviation became crisis resource
management for healthcare professionals, especially through the work of Gaba in
anaesthesia (Gaba et al. 2001).
Advantages of simulation
In
the medical domain, simulation is defined as the
Alinier
(2007) classified different types of simulation. He delimited 6 levels of
simulation teaching, from basic knowledge/no technology (pen and paper
simulation; Level 0) to high knowledge and practice/advanced technology
(high-fidelity simulation; Level 5, see Figure 1). High-fidelity simulation remains
the most comprehensive to train non-technical skills, but learners need to have
enough theoretical and procedural background knowledge to be effective. So,
these different kinds of simulation should not be seen as opposed but
complementary. Some bring knowledge (e.g. low-fidelity mannequin, software),
others provide procedural know-how (e.g. high-fidelity simulation).
Figure 1. Classification of simulation (adapted from Alinier 2007), including examples of study focused on CRM Education in intensive care, emergency medicine and anaesthesia
At the end of the 1980s, Gaba and DeAnda (1988) developed a simulator in a real operating room to investigate decision making and human performance during critical situations in anaesthesia. This kind of simulation challenges technical skills but also non-technical skills (e.g. I stay calm in crises, I focus on priorities, I assume the role of team leader, etc.;) (Holzman et al. 1995). Among many advantages (see Cook et al. 2011), the simulation reduces errors and improves patient safety (Salas et al. 2005). Learners increase autonomy and self-confidence when delivering patient care after practising first with high-fidelity patient simulators (Peteani 2004). Recent technological advances allow learners to carry out interventions on high-fidelity mannequins (Maran and Glavin 2003; Cooper and Taqueti 2008), especially in intensive care (Campbell et al. 2009) or emergency medicine (Small et al. 1999). CRM courses facilitate improvement of NTS such as team working, leadership, communication or managing stress (Coker and Kass 2006; Naik and Brien 2013). CRM learning should be designed for each activity with multiple working supports, including theoretical courses and simulations. Professions such as intensive care or emergency medicine include some critical situations that generate stress and challenges. Physicians must be prepared in order to anticipate problems and complications with adequate communication (e.g. accurate, cordial), leadership/ team working (e.g. role distribution), situation awareness/decision making (e.g. avoid the tunnel effect) and to be preserved from emotional disorders. Apart from mannequin training (parts, low or high fidelity), we can mention the importance of advanced software in medicine. Computer-based applications are increasingly used to support learning in medicine. The technological improvement of virtual environments, virtual reality, and augmented reality creates an expansion of use in the medical domain (Barsom et al. 2016). For example, serious games have emerged in health professional training (Drummond et al. 2017), as in cardiopulmonary resuscitation thematic applications like CPR simulator or Staying Alive (see Wattanasoontorn et al. 2013). Some serious games can be used in CRM education (Barré et al. 2017). In this last study (ongoing project), the authors are improving NTS physicians’ learning in postpartum haemorrhage (PPH) situation with PerinatSims software.
Perspectives
In this paper, we highlighted that education and teaching of CRM in medicine, mainly in critical situations, helps to reduce errors and accidents. Simulation is a virtuous circle for CRM; it provides evaluation of the skills of professionals (Kim et al. 2006) and at the same time improvement by training (at the end of evaluation a debriefing with the learners capitalises on the knowledge and the know-how). Simulation may improve specific NTS, such as communication (e.g. role playing), situation awareness or decision- making (e.g. serious game), but can also simulate situations that challenge all NTS (e.g. high-fidelity).
1. The first denomination was cockpit resource management used in 1979 in the NASA conference (Cooper et al. 1980).
Conflict of interest
Jessy
Barré declares that he has no conflict of interest. Arthur Neuschwander
declares that he has no conflict of interest. Antoine Tesniere declares that he
has no conflict of interest.
Abbreviations
CRM crew/crisis resource management
NTS non-technical skills